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Abstract: A novel Adaptive Iteration Learning Control (AILC) method is proposed to solve the
trajectory tracking problem for a class of nonlinear uncertain systems with external disturbances.
Furthermore, the output of system is required to be bounded by a time-varying function. To this
end, a Barrier Lyapunov Function (BLF) term is integrated into the AILC scheme such that
the impact of the uncertainties and disturbances are significantly reduced without violating the
output constraints. A Barrier Composite Energy Function (BCEF) is utilized to analyze the
convergence of state error and the boundedness of output. The validity of the proposed AILC
scheme is verified by a numerical example. In addition, a high-fidelity simulation platform that
can generate a real-life turbulent flow is utilized to demonstrate the robustness of the algorithm.
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1. INTRODUCTION

As a highly effective data-driven control methodology,
Iteration Learning Control (ILC) has proven its success
in addressing control problems with repetitive tasks. By
obtaining input-output measurements with limited infor-
mation about the previous iterations, ILC method can
improve the tracking performance of the current iteration.
Since first proposed by Arimoto et al. (1984), ILC has
achieved significant development with successful appli-
cations in various engineering fields (Xu et al. (2008)),
such as robot manipulators (Chien and Tayebi (2008)),
spacecrafts (Wu et al. (2021)) and autonomous vehicles
(Li et al. (2022)). Recently, ILC algorithms have also been
applied to unmanned aerial vehicles (UAVs) (Meraglia and
Lovera (2022); Foudeh et al. (2020); Cobb et al. (2019)).
For example, for monitoring overhead power lines (Jones
(2005)), ILC provides superior behavior in fault-finding
operations and accurate trajectory tracking. It is worth
noting that the aforementioned applications share not only
the fast response requirement of their repetitive tasks but
also some critical safety requirements which can be in-
terpreted as time-varying output constraints. In addition,
the processes to be controlled are usually nonlinear, in-
accurately modeled and effected by time-varying external
disturbances, for instance, the winds in the UAV case.

The adaptive ILC approaches are widely acknowledged
for their abilities to handle system uncertainties by ef-
fectively utilizing information related to system structure
and the repetitive operation patterns (Yu et al. (2016)).
In recent years, some novel adaptive ILC methods (Xu
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and Tan (2002); Yu et al. (2016); Jin and Xu (2013); Yin
et al. (2011); Yang et al. (2022)) have been developed by
introducing adaptive mechanisms into iteration domain.
However, only a few works (Jin and Xu (2013)) have
considered the system with output constraints.

Many techniques have been developed in Non-ILC fields
to handle the output constraint requirements, such as
set invariance notions based method (Hu and Lin (2001);
Liu and Michel (1994)), using artificial potential fields
(Khatib (1986); Warren (1990)) and Barrier Lyapunov
function (BLF) (Tee et al. (2009, 2011)), etc. Among
them, BLF-based ones are widely recognized in practice.
To integrate BLF into the ILC framework, Sebastian
et al. (2019) considered a robotic manipulator system
with hard output constraints. In Jin and Xu (2013), the
authors discussed constant output constraints by utilizing
the barrier composite energy function (BCEF). To the
best of our knowledge, the time-varying output constraint
problem for the system considered in this paper has not
been addressed via ILC methods.

Inspired by the above discussions, a novel BLF-Based
adaptive iteration learning control (AILC) scheme is pro-
posed. The presented method achieves high-performance
trajectory tracking for a certain class of uncertain nonlin-
ear systems subject to stringent output constraints and
perturbations generated by external disturbances. These
uncertainties, constraints, and disturbances in considera-
tion are all time-varying and could be state-dependent. In
addition, the influence of initial errors is also taken into
account. Distinguished from the aforementioned adaptive
ILC, this new AILC not only can deal with parametric un-
certainties and external disturbances, but also can handle
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time-varying output constraints. The reason to emphasize
the merits of considering time-varying output constraints
mainly lies in consideration of the possible large initial
error. Note that, there are many techniques developed in
ILC community to relax or remove the identical initial
condition (i.i.c.), such as alignment condition (Xu and
Jin (2013)) and time-varying boundary layer technique
(Chien et al. (2004)). However, in the context of BLF, a
large initial error either results in a conservative and large
constraint setting (which is not very useful in practice)
or draws too near to the boundary (which may lead to
excessive control input) at the beginning of the process.

Notations: R™ denotes the sets of n dimensional real
vectors; N denotes the field natural numbers; |a| denotes
the absolute value of the scalar a; |b(t)|syp denotes the
absolute maximum value of b(¢) in [0,T]; |||l represents

the Euclidean norm of the vector x; (-) represents the

estimate of (-); RMS(((t)) = /A& [ 22(t)dt. Other

notations will be introduced as needed.
2. PRELIMINARY

Definition 1. (Tee et al. (2009)) A Barrier Lyapunov Func-
tion is a scalar function V'(x), defined with respect to the
system @ = f(z) on an open region D containing the
origin, that is continuous, positive definite, has continuous
first-order partial derivatives at every point of D, has the
property V(z) — oo as z approaches the boundary of D,
and satisfies V(z(t)) < b, V& > 0 along the solution of
= f(x) for 2(0) € D and some positive constant b.
Lemma 1. (Tee et al. (2009)) For any positive constants
]{11,]{}2, let 2, = {Zl e R : -k < z1 < ]412} Cc R
and N := R! x Z; € R'*! be open sets. Consider the
system 7 = h(t,n), where n = [w,z]" € N, and
h: Ry xN — R*!is piecewise continuous in ¢ and locally
Lipschitz in z, uniformly in ¢, on Ry x A/. Suppose that
there exist functions U : Rl — R, and V; : Z — R,
continuously differentiable and positive definite in their
respective domains, such that

Vi(z1) 00 2z — —k; or

T ([[wl) = U(w) = v2([Jw])
where v and 72 are class K, functions. Let V(n) :=
Vi(21) + U(w), and z1(0) belong to the set z1 € (—k1, ko).
If the equation V = %—‘;n < 0 holds: then z;(¢) remains in
the open set 21 € (—ki, k2), Vt € [0, 00).

Zl—)kg

3. PROBLEM FORMULATION AND CONTROLLER
DESIGN

Consider the following SISO model ! with both parametric
and unstructured uncertainties:

B1,i(t) = 22,(t)
da,i(t) = O(t) TE(xi(t)) + blui(t) + d(xi, 1))
yi(t) = z1,4(t) 1)
where i € N is the iteration index, x; £ [z1, 72,]" € R?
and u;(t) € R are accessible states and input, respectively.

1 For the sake of readability, we present our method for a simple
second-order system. It is not difficult to extend the proposed
algorithm to a high-order system which features a cascade integrator
and can represent many nonlinear systems encountered in practice.
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0 = 0(t) € R™ is a time-varying unknown vector function.
& = £(xi(t)) € R™ denotes a known state-dependent
vector function. d; = d(x;,t) € R represents an unknown
unstructured uncertainty. ¢ € [0,7] where T' > 0 is the op-
eration time in each iteration. b € R is a known constant.
The tracking error is defined as e; £ [e1, €a;]' = X, —
x; € R?, where x, stands for the desired state vector.

The system satisfies the following assumptions.

Assumption 1. There exist a reference output y, = z; ,
and a reference input u, satisfying the system model:

L1y = T2,r
i'Q,i = BTST + br(ur + d'r)
Yr = T1r (2)

such that |y.(t)] < e,(¢) holds for output constraint e, (¢).

Assumption 2. The alignment condition that requires the
final states from the previous iteration are identical to
the initial states of the current iteration, is satisfied in
every iteration i.e., x;(0) = x;_1(T), for all : € N.
Furthermore, reference states are closed in space, meaning
x,(0) = x,.(T). For tracking error, we have:

€i(0) = %,(0) = x(0) = %,(T) = x;-1(T) = e;i-1(T) (3)
Assumption 3. The unstructured uncertainty d(x;,t) is
locally Lipschitz continuous, i.e., |d, —d;| < (%, %x;)||%x,—
x;||, in which ¢(x,,%x;) and d, 2 d(x,,t) are known
bounded functions.
Assumption 4. For unstructured uncertainty d; and para-
metric uncertainty 0; = [61,;, 2., - - , Gm,i]T, there exist
constants d; and 6;, l = 1,2,--- ,m, such that

|0l,i|sup < 9[ ) |di|sup < dz

Remark 1. As a projection operation will be needed in
the proposed control algorithm, Assumption 4 is essential.
However, one can always select sufficiently large param-
eters to bound these uncertainties without compromising
the performance of the algorithm.

The control objective is to find a control input sequence
{u; }ien such that the states x;(t) converge to the desired
x,(t) without violating the constraints, by considering
parametric uncertainties and unstructured uncertainties.

Remark 2. The problem addressed in this work is a con-
straint tracking problem. It is constrained in the sense that
all the states of System (1) are observable, but only a part
of them are equipped with size limitation. In fact, such
scenario is rather prevalent in practical applications, for in-
stance, for a manipulator working alongside human being,
the safety of mankind is critical. The safety requirements
then can be interpreted into joint angle constraints.

In order to achieve the control objective, the control law
with ILC scheme in the i-th iteration is designed as

U = g‘effz + ez + %[iz,r - é;rfz] —d;
+ sign(p(e:)b) il el (4)
0; =Po(0;—1) — pp(e;)&;  0o=0 ()
di = Pa(di—1) — Bples)b  do =0 (6)
Vi o mes . _4.2¢7 med ;
where ey = k sec*( 23 Je1,; with V4 ; = k=% tan( 23 ).

Vb, is a BLF that approaches infinity as |e1 ;| — &(¢),
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where e(t) denotes the constraint on output tracking
error. k,7y are positive control gains, and p,5 > 0 are
adaptive learning gains, respectively. The function p(e;)
will be determined later, while Pg and P, represent the
projection operations

P@(G’L) = [Pe(él,i),"' 7'P0(A )]T
A éliv |9l1|<91,
Po(fy ) =240 _ |
9( [ ) {Slgn(gl,i)gl7 |0l1| > 0[, m
= {% @i < d
d;) = o 1 l
Pa(d;) {sign(di)di, \d;| > d;

Remark 3. In practice, the output constraints are typi-
cally specified with respect to the output signal y;, rather
than the error signal e;;. To develop an appropriate
boundary function e;(t), we assume that there is a safety-
related requirement k() imposed directly on y;(t), ie.,
ly;(¢)| < kp(t). Then, according to the relations |y, (¢)| <
e, (t) and |y; (t)] < |yr(t)|+]e1,i(t)], we can select €, (t) such
that 0 < ep(t) < kp(t) —e,(t). By ensuring |ey ;(¢)| < ep(t),
ly: ()] < yr ()] + le1: ()] < en(t) + &, (t) < kp(t) holds.

Remark 4. There exist several types of barrier functions
available for designing a proper BLF-controller, among

2
which the nature logarithmic functions log( ~2—) and

-
trigonometric tangent functions tan(”§62e) are Commonly
b

used in the literature (Xu and Jin (2013)). In this work,
we choose the tan-type barrier function, but the others,
including the natural logarithmic type one, are also ap-
plicable, as long as they verify Lemma 2 that will be
mentioned in the next section.

4. STABILITY ANALYSIS

To facilitate the analysis of state tracking error conver-
gence under output constrained conditions, we introduce
a simplified system:

T1 = T , To =bv
where b > 0 is a positive coefficient for the control input,
v is control input and x1,x2 € R are system states. Let
X 2 [z1,15] T, we define tracking error e = [e1, ea] T = x, —
x, |e1(0)] < &p(0), where x,. is the vector of desired states.
Consider the control input as follows:

2
mel 1

% 2)61 +’}/62+ bIEQT (7)

where k,y are positive gains.

v = ksec’(

First, we can obtain the error dynamics:

mes
é = A,e + B{—bk[sec? (2 1) 1le1}

0 1
Ag = |:—b]€ —b’7:| )

Due to Ay is the Hurwitz matrix, there exist symmetric
s : : Py Py Q11 Qi2
tive definit t P= =

positive definite matrices [Pm Pay Q Oz Ona |’

which satisfy Lyapunov equation A] P+PA, = —Q. From

Lyapunov equation, the elements of P, @) should satisfy the

following relations

B=1[01]"
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k+by? k
Py = QbV; Qi1+ %sz — Q12 (8)
1 1
Py = 27;()Q11 , Pao = bzk S @u 2bny22 (9)

with positive elements th QQQ, Pll; Plg, P22.

Consider the Lyapunov function candidate V

Vi=Vo+V, , Vo=e' Pe
2Pyobke? me?
Vy=—"""—7"2¢% — 10
b ™ an( 25% ) ( )
bAP1y Pia

where P = [ Prs ng] . From (8)-(9), it is trivial to verify

Pyy > 0, bAP1z > 0, bAP12 Pyo — PE = 35Q11Q22 > 0,
which indicates matrix P is symmetric positive definite.

The following analysis will demonstrate that the BLF is
bounded and the asymptotic convergence of e is guaran-
teed. At first, taking the time derivative of (10) yields:
Vl :eT (A;FP + PAS)e + Q(b’yPlQ — Pll)eleg
2 .
+ 2eTPB{—bk;[sec2(%) —1lei} + W
b
= —e' Qe+ 2(bkPy + byPis — Pi1)eren

Poey

2
ey
— 2bk Py [sec? (2 2 )1+ P12€b) — 1]e?
4 Pyobk
22 an(Leg ) (11)
2¢;;

where p(e;) = 2Pi2e1 ;+2Psses ;. In order to prove that Vi
is negative definite, we proceed our analysis by considering
the following two cases for &, separately.

Case 1: ¢, < 0. By substituting £, < 0, together with

2
ALabhz, tan(3+)é, < 0, the equation (11) becomes
b

. 2 Py
Vi < — e’ Qe — 2bkPia[sec? (265)(1 420
-+ Q(bkpgg + b’)/Plg — P11)6162
In view of (8)-(9), we obtain
2
me
—[Qu1sec*(—)(1

€p P12€b

) — 1ed

Proey

Pysey,

)]ef - Q22€§

By choosing a suitable boundary function ep(t) that sat-
isfies 1 + 5228” > 0, we have V1 < —qie'e with oy =

max{[Q1; sec (”5)(1 + Batn)] g},

Case 2: £, > 0. Making use of (11), one obtains

Vi <

2
. e
Vi=—e'Qe— 2ka12[SGCQ(?§ ) — 1]e?
+ 2(ka22 + b’}/Plg — P11)6162
2 2 2

4bk Pysepey mel o5, TET | TeY
- 7= - - t —_ =) — - =y =
+ T [tan( 2e? ) = see’( 2e? ) 2e? }

2 2 2
Since % > 0, we have tan(3 b) — Sec2(g§:)% < 0.
Meanwhlle by taking (8)-(9), it follows that
me?
Vi < —Q11 sec X 1) — Qaoe3 < —ase'e

b
2

where ay = max{Q11 sec

) Q22}-
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Combining two cases, we obtain V; < —ae'e with a =

max{ai,az}. Now we summarize the above analysis in the
following lemma.
Lemma 2. Consider the system in the form of

3'31 = T2 s j)g =bv
where b > 0 and v is the control input. Define x
[1,72)T € R%, %, & [2,1,70] T € R? and e = [e, €] "
X, — X as system states, desired states and tracking error,
respectively. Given the controller as

(1> 11>

me? 1
v = ksec’( 2)61+’V€2+ ~T
2¢ b
there exists a BLF V (e) > 0, Ve # 0, such that
z—‘e/g(e) < —ae'e

with a, v,k > 0, g(e) = [ea, —bk sec(;%%)el — byeg] T
b

The main result is stated in Theorem 1 as follows.
Theorem 1. For System (1) that meets Assumptions 1-4,
the control law (4) and the adaptive learning laws (5)-(6)
guarantee that

i) e; approaches to zero asymptotically along the itera-
tion axis for V¢ € [0, 7], namely lim ||e;(¢)|| = 0.
71— 00

ii) Further, if the initial state tracking error verifies the
constraint, i.e., le1 ;(0)] < &,(0), then |e1;(t)] < es(t)
will be guaranteed for all ¢t € [0,T],i=1,2, ---.

Using Lemma 2 and controller (4), we have

e; = g(e;) + f(e;) (12)
_ met T
g(e;) = [ea,;, —bksec(— 520 “Jei; — byea,]
€p
fle)) = [0, (6—0;)T&—b(d;—d;)—sign(p(e;)b)by; e[ T
Proof 1. The BCEF in i-th iteration is designed as
E(t)y=V1,;+ Va,; + Vs, (13)
T
Voi= — [ (687 (0—d,)dr (14)
2p Jo
1 (T -
Va i = =5 dz — dz dr 15
=55 [ @—d) (15)

where Vi; = V(e;(t)) is a barrier Lyapunov function
satisfying Lemma 1. Note that, although V5; and V3,
contain the estimation errors of the uncertainties, it is
unnecessary to show the convergence of the estimates,
therefore no persistent excitation condition is required.

The proof is structured into three main parts. Part I
establishes the non-increasing property of the proposed
BCEF over the iteration domain at instant ¢ = 7. In
Part II, we demonstrate the boundedness of BCEF at the
first iteration and exhibit its finiteness throughout any
iteration. Finally, in Part III, we obtain the convergence
of the tracking error and the boundedness of output.

Part I: Difference of BCEF
Consider the difference of BCEF (13) between two adja-
cent iterations at time ¢t =T

AE(T) = E(T) — Ei—1(T)

= AV (T) + AV, (T) + AV3 4(T) (16)
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For the first term on (16), we have

AVy(T) = V(ei(T)) — V(ei—1(T))
T avT .
—v?w»+4<&%wM—V@1@»
T

— [ Setaten + fen)

0 (3

T
< / el e; — plen)[(6 — 6:) 7€, + b(d; — dy)

0

+ sign(p(e;)b)by;|e;|] (17)

when p(e;) = 0, the second and third terms of (17) become

zero, then (17) becomes AVy ;(T) < fOT —ae] e;dr; when

p(e;) # 0, we obtain

T T
AVL(T) < — / aeT esdr — / p(e:) (6 — ;) edr
0 0

—/'m%wm—&mT—/|m%m%wmm (18)
0 0

According to the adaptive updating law (5), and using the
inequality (0 —0;_1)T (0 —0;_1) > (0 — Pg(6;_1))7 (0 —
Po(0;—

1 N
%{(9 —0:) (0-6;) -

1)), we can derive
(0-0i-1)7(0—6;-1)}

< ple:)(0—0:)7T€; — Eplen)? &

therefore, for AV, ;(T), we have

T ~
AV, 4(T) SA p(e;) (0 —6;)" ¢.dr (19)
In terms of (d, — d;_1)% > (d, — Pa(d;_1))?, we have
AV3(T) < 2ﬁ/ (dy — d)? = (dy — Palds_1))2dr
g/o p(e;)b(d, —dz)dT (20)

Hence, combining all terms from (18), (19) and (20) yields
T T
AE(T) < - [ aeledr— [ In(ebleiledr
0 0

T

+/ p(ei)b(dr — di)dT (21)
0

From Assumption 3 and p(e;)b(d,—d;) < |p(e;)b||d(x,,t)—

d(x;,t)], one can AE;(T) < —fOT ae/ edr, ie., E;(T) is

monotonically decreasing along iteration axis.

Part II: Boundedness and Finiteness of F;(t)

To prove the boundedness of the given BCEF at the first

iteration, we differentiate Ey(t) with respect to time ¢

E1(t) = V1,1 + V2,1 + V3,1

Similar to (18), we can obtain

V1,1 < —aefe; —pler)(0 +ple)€;) " &
— p(e1)b(d1 + p(e1)b) — [p(e1)blerller]|

. 1
Vo < o 101 + Soen? 1] + plen)é, 0

V31<*d2+6

1= 550 p(e1)?b” + p(e1)bd,
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Thus, we have

. 1
E;(t) < — e —|18]1? —d2
(t) < aelel+2p|| 1° + 55

el ~ Dplen® <00 (22

2
and since @ and d, are finite with respect to finite ¢ and
Xy, (22) indicates that Ey(T) is finite.

For any iteration ¢ > 2, we have
Ez(t) = ‘/17, + sz + V31

Also, similar to (18), we have

Vl,i < _O‘ezTei —p(e;)(0 — éz‘)Tﬁi
— |p(ei)blewilleil

1 . .
—(0—6,)"(6—6;

350 =607 (0 =)

— p(ei)b(d; — d;)

V2,i =
1)+ [Pe(8:-1)|%]

+p(e)[8 — (Po(8i-1) — p(e)€] € — Ep(en €11

1 ”
= %[HOHQ — 20" Py(6;_

_ ﬁ _ANT P 2
= 5% +p(e)(8 - 0)7€: - plen) €]
L1 s
VB,Z ﬁ(dz 7,)
2 [d2 —2d,P(di_1) + P(di—1)? + 28p(e;)bd
— 28p(e)bP(di—1) + Bp(e:)*b?]
_G iy P ez
35 P, —di) = Gple)
with C1 £ [|0]|2 — 207 Pg(0;-1) + || Po(8;-1)[|* and C; £
dg — QdTP(dZ;l) + P(di,1)2
Since p(e;)b(d, — Jz) —p(e;)b(d; — Ciz) —|p(eq)bleille:]| <0,
we have
. ) ) . c C
E@t)=Vii+ Vo, +V3,; < + 7; < 00

The initial value of BCEF at z—th iteration FE;(0) =
V1,:(e(0)). Since €;(0) = €;-1(T), and e;_1(T) can be
proved to be bounded by showing BCEF is bounded in the
(i — 1)-th iteration. The boundedness of E;(t) and F;(0)
implies the boundedness of E;(t), hence the boundedness
of V1 ; will be guaranteed, therefore |eq ;(t)| < &,(t) will be
ensured for any time in all iterations.

Part III: Convergence of State Tracking Error and
Boundedness of System Output

Since AE;(T) < 0, BCEF at the i-th iteration is

ZAE

lim Ex(T)

k—o0

In terms of the positiveness of Ek(T ) and finiteness of
Eq\(T), klim Zf:z fOT ae, e;dr converges. Therefore, we
— 00
have lim Y0, fOT ae/ e; = 0, which implies lim ||e;(t)| =
k— 00 k—r o0
0, Vt € [0, 7).

11871

Hence, it follows that the output tracking error ey ;(t)
in any iteration cannot exceed the open set e;(t). Since
lysl < lyr| + le1s] and 0 < &p(t) < kp(t) — £,-(¢), one
concludes that |y;| < |y,| + |e1,:] < ep(t) + - (t) < ku(2).
As a result, the boundedness of ey ;(t) and y,(¢) implies
that y;(t) is also bounded by the predefined constraint.

5. SIMULATION RESULTS
5.1 Numerical Example

Consider System (1) with x1(0) = [-%,0]" and b =
0.897. Reference output to be tracked is y, = sin(5t), for
€ [0,12]. 6(¢) is chosen to be time-varying, as 91( ) =
1.2sign(sin(%1)), 1 = 1,2,3 and &, = [z1,, 23, 27, .
The external disturbance is d; = 0.2sin(x; ;)+0.2 Sln(207rt).
The tunning parameters are selected as k =2, vy =4, p =
0.1, B = 01, p(ez) = 2.561,,' + 26271‘, d =2 and 0[ = 4, for
1=1,2,3.

The sampling time of the simulation is 0.01s. Under
consistent setting, we consider two types of the output
constraint: 1) the constant e, = 1.2; 2) &5(t) = 1.1e~ 1% +
0.1. The simulation results are shown in Figs. 1-4.

The variation of |e; ;|sup, along the iteration axis, is shown
in Fig. 1, which captures the worst performance of output
in each iteration. This means that if |e1 ;|syp converges, the
output trajectory also converges. Fig. 2 shows the conver-
gence profile of the state tracking error. The convergence
is achieved in both cases without violating the output
constraints. Fig. 1 and Fig. 2 suggest that the time-varying
error bound £,(¢) can enhance the convergence speed.

y T T B =1le ™01
—E&y = 1.2

1 3 5 7 9 11 13 15 17 19 21
Tteration, 4

Fig. 1. Absolute maximum value of output error for e, (t) =
1.1e= 15 4 0.1 and €, = 1.2 in each iteration

—ep(t) = L.le 19+ 0.1
—ep = 1.2

RMS(le;])

1 3 5 7 9 1‘1 13 15 17 19 21
Iteration, ¢

2. RMS of the state error for &,(t) = 1.1e7%%* + 0.1

and g, = 1.2 in each iteration

Fig.

By comparing Fig. 3 with Fig. 4, we observe that the
output trajectory y; in Fig. 4, under the application of
time-varying error bound, tracks the reference trajectory
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better during the first iteration. Conversely, the output
trajectory y; in Fig. 3 goes through a significant overshoot,
which may pose safety issues in practical applications.
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Fig. 3. Output Trajectory y; for g, = 1.2
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Fig. 4. Output Trajectory y; for ey(t) = 1.1e7 15 + 0.1

5.2 High Fidelity Simulation

In this section, high fidelity simulation platform is used
to verify the reliability and validity of our method based
on a recently proposed GPU-optimized lattice Boltzmann
solver (Li et al. (2020)). The platform can simulate two-
way coupling in an efficient and scalable manner, even
for turbulent flows, by a novel low-dissipation and low-
dispersion fluid solver.

The experiment is implemented on a computer with an
Nvidia RTX 3080Ti GPU. The rendering rate, grid reso-
lution, and air viscosity are set as 100 fps, 500 x 250 and
0.0001 N - s/m?, respectively. In addition, we consider a
uniform flow from top to bottom with speed 0.3m/s.

To emphasize the influence of the complex fluid environ-
ment on the plant, a square object is chosen with length as
0.2m and weight as 1kg. In this platform, the proposed
method is applied to a 2D attitude control task of the
square object. The bottom of this object has an angle-
controllable nozzle that is able to generate a fluid with
velocity ranging from 0m/s to 4m/s. Moreover, to show
the robustness of the controller, we choose the reference
trajectory and initial states as follows
X, = [O.4cos(gt)7 —g sin(gt)]—r ,
By using this trajectory, nozzle wil generate a high-velocity
fluid at the begining of the simulation, which will cause
great effect on the environment and further influence the
object itself. The tunning parameters are the same as the
above numerical example except for T = 4 and ¢(t) =
L.1e7 94 +0.2.

x1(0) = [0.4, 0"
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The RMS of the state error is shown in Fig. 6. It can
be seen that, under the influence of turbulent flow, the
controller is still able to keep the output of the object
within the constraint and achieve convergence of the state
error with iterations.

Remark 5. This object can be easily replaced with other
UAV models for more realistic aircraft simulation tests.
The external disturbances include steady winds, turbulent
flows, various types of wind shear, and the propeller
vortex. These influences are challenging to be quantified.
Nevertheless, under comparable environmental conditions,
wind disturbances on repetitive control assignments, such
as the aforementioned UAV task, can be regarded as both
time-varying and state-dependent.

6. CONCLUSION

This study proposes a novel AILC scheme for nonlinear
systems with output constraints and uncertainties, which
actively confines the output to a proper time-varying func-
tion throughout all iterations. Furthermore, this method
guarantees the asymptotic convergence of the states to
their desired values under alignment conditions, despite
the presence of parametric and unstructured uncertain-
ties which both are time-varying and state-dependent.
Numerical examples and high-fidelity simulation results
confirm the effectiveness and robustness of the proposed
AILC scheme. Future studies will focus on exploring the
extension of the considered systems to MIMO systems and
applying our method to practical systems, especially UAV
systems.
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